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Abstract. We use the finite lattice method to count the number of punctured staircase and self-
avoiding polygons with up to three holes on the square lattice. New or radically extended series
have been derived for both the perimeter and area generating functions. We show that the critical
point is unchanged by a finite number of punctures, and that the critical exponent increases by a
fixed amount for each puncture. The increase is 1.5 per puncture when enumerating by perimeter
and 1.0 when enumerating by area. A refined estimate of the connective constant for polygons by
area is given. A similar set of results is obtained for finitely punctured polyominoes. The exponent
increase is proved to be 1.0 per puncture for polyominoes.

1. Introduction

A self-avoiding polygon (SAP) can be defined as a walk on a lattice which returns to the
origin and has no other self-intersections. Alternatively, we can define a SAP as a connected
sub-graph (of a lattice) whose vertices are of degree two. The history and significance of this
problem is nicely discussed in [15]. Generally, SAPs are considered distinct up to a translation,
so if there arepn SAPs of lengthn there are 2npn returns to the origin (the factor of two arising
from the two possible directions in which the loop can be travelled). Staircase polygons are
a special case of SAP. A staircase polygon can be viewed as the intersection of two directed
walks starting at the origin, taking steps either to the right or down and terminating once the
walks meet. We define a punctured SAP as a SAP with one or more holes, with the perimeter
of each hole itself being a SAP. In other words a punctured SAP is a SAP enclosing one or
more SAPs. To avoid any possible confusion in our definition of punctured polygons, note
that the punctures are disjoint—there are no degree-four vertices in the punctured polygons we
are considering. A similar definition can be given for punctured staircase polygons. We have
shown an example of each case in figure 1. The two principal questions one can ask are ‘how
many polygons, distinct up to a translation, are there of perimeter 2n (including the perimeter
of the holes) withk punctures?’ and ‘how many polygons, distinct up to a translation, are there
of arean with k punctures?’

A polyomino is defined as the union of connected cells, where a cell is a unit square
with four edges (and its interior). Two cells are said to bejoined if they share a common
edge, and are said to beconnectedif there exists a sequence of cells joining the two cells
such that successive pairs of cells are joined. Ak-punctured polyomino is a polyomino withk
holes. Unlike the situation for punctured polygons, degree-four vertices are permitted, but two
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Figure 1. An example of a punctured SAP (left panel) and a punctured staircase polygon (right
panel). The thick lines show the perimeter of the enclosing polygon while the medium lines show
the perimeter of the holes.

Figure 2. An example of a punctured polyomino that is not a punctured polygon.

holes meeting only at a vertex do count as two holes, rather than one, as they are not joined.
Punctured polygons are a proper subset of punctured polyominoes. The difference between
them is that punctured polygons do not include those polyominoes where there are two cells
touching each other only at a vertex. An example is shown in figure 2.

Reverting tok-punctured polygons, fork = 0 we have the simpler—but still unsolved—
problem of the number of polygons of perimeter 2n or arean. Both these problems have been
extensively studied for several decades. The most recent result for polygon perimeters appears
to be [17] where polygons of perimeter up to 90 steps are given. In that paper our analysis of
the polygon perimeter generating function led us to conclude that

P (0)(x) =
∑
n

p
(0)
2n x

n ∼ A(0)(x) +B(0)(x)(1− µ2x)2−α

wherep(0)2n is the number of SAPs of perimeter 2n, distinct up to translations. The analysis
in [17] yielded a very accurate estimate for the connective constantµ = 2.638 158 530 34(10)
and confirmed the theoretical predictionα = 1

2 [19]. Furthermore, we obtained estimates for
the critical amplitudesA(0)(xc) ≈ 0.036 andB(0)(xc) ≈ 0.234 913, wherexc = 1/µ2. We
also concluded that there was no evidence for a non-analytic correction-to-scaling exponent,
so that we expect the asymptotic form of the coefficients to behave as

p
(0)
2n ∼ µ2nn−

5
2 [a1 + a2/n + a3/n

2 + a4/n
3 + · · ·].



Punctured polygons and polyominoes on the square lattice 1737

The connective constantµ is, of course, the same as that for self-avoiding walks on the same
lattice [15].

For polygon areas the most recent published work appears to be [9] in which the first 20
terms of the area generating function were given and analysed. In that work it was found that

A(0)(y) =
∑
n

a(0)n y
n ∼ C(0)(y) +D(0)(y) log(1− κy)

wherea(0)n is the number of SAPs of arean, κ ≈ 3.970 87, and the amplitudesC(0) andD(0)

were not estimated. Recently this series has been extended to 26 terms [20], but in this work we
have devised a new and exponentially faster algorithm, as a result of which we have extended
the series to 42 terms, and we present an analysis of this longer series. The connective constant
κ is found to be slightly smaller than that for the related problem of polyominoes [10].

In the following, we refer to the boundary of a polygon and its interior as adiscand so
we will be discussing punctured discs. An unpunctured disc is a SAP.

For punctureddiscs, the basic problem is, analogously, the calculation of the generating
functions

P (k)(x) =
∑
n

p
(k)
2n x

n ∼ B(k)(x) +C(k)(x)(1− (µ(k))2x)2−αk (1)

and

A(k)(y) =
∑
n

a(k)n y
n ∼ D(k)(y) +E(k)(y)(1− κ(k)y)−βk (2)

where the superscriptk refers to the number of holes, or punctures. From the generating
function, one wishes to deduce the asymptotic behaviour, believed to be as shown on the rhs
of the above equations. The major problem to be investigated is how the behaviour ofP (k)(x)

andA(k)(y) changes ask is increased. Previous work [25, 26] has been confined to the study
of punctured SAPs by area. There it was proved thatκ(k) = κ(0) = κ, and that if the exponent
exists,βk = β0 + k. These results apply more generally to punctured surfaces, but in this work
we are confining ourselves to two dimensions. As far as we are aware, there has been no
previous work on the problem of the perimeter generating function of punctured discs.

The problem is interesting for several reasons. The effect of a change in geometry is
a much studied topic in lattice statistics, and our study of the change in perimeter exponent
with punctures seems to be entirely new. It has only been possible by the algorithms we have
designed and implemented, which are exponentially faster than pre-existing algorithms. A
number of related models have been studied previously, such asc-animals [18, 24] and the
behaviour of prime knots in polygons [22].c-animals are lattice animals with exactlyc cycles.
In [24] it was proved that if the number of such animalsan(c) ∼ λncnθc asn → ∞, c fixed,
thenθc = θ0 + c provided thatθ0 exists. It had been previously proved [28] thatλc = λ0. The
change in connective constant ofc-animals as the number of cycles per vertex changes from
zero to non-zero is discussed—among other results—in [18]. Similarly, in a numerical study of
knotted polymers [22], it wasconjecturedthat the exponentα depends on the number of prime
knotsnp that arise in the knot decomposition of a given SAP via the relationα(np) = α(0)+np.

Furthermore, there is considerable pedagogical connection between some of these previous
studies and our work here, and also between our work and the study of branched polymers.
To sketch this connection, we first remark that the number of polyominoes, also called lattice
animals, is just the number of (strongly embedded) site animals. This connection is readily
seen by placing a site at the centre of every cell of the polyomino, and joining those sites
corresponding to joined cells by a bond. In this way, every lattice animal is mapped to a
distinct site animal and vice versa. All other models we are considering map similarly to a
different subset of strongly embedded site animals. For example, SAPs map to site animals
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whose only cycles are 4-cycles (which may be isolated or joined). Punctured polygons map to
site animals with larger cycles, as well as 4-cycles, whereas punctured polyominoes correspond
to site animals with more complex restrictions. Thus, this study also complements the earlier
studies ofc-animals. In those studies, the variation of exponent with the number of cycles is
considered, whereas in this study we are varying thetypesof allowed cycles.

In order to study these and related systems, when an exact solution cannot be found one
has to resort to numerical methods. For many problems the method of series expansions
is by far the most powerful method of approximation. For other problems Monte Carlo
methods are superior. For the analysis ofP (k)(x) andA(k)(y), series analysis is undoubtedly
the most appropriate choice. This method consists of calculating the first few coefficients in
the expansion of the generating function. Given such a series, using the numerical technique
known as differential approximants [13], highly accurate estimates can frequently be obtained
for the critical point and exponents, as well as the location and critical exponents of possible
non-physical singularities. Other numerical methods are discussed in [17], and those used in
this study are described more fully below.

In the next section we will describe the finite lattice method for enumerating punctured
polygons. In section 3 we prove the invariance ofµ(k) ask changes, and give an heuristic
argument for the exponent shift withk. The results of the analysis of the series are presented
in section 4. Results analogous to those known for punctured polygons by area are proved for
punctured polyominoes in the appendix.

2. Enumeration of punctured polygons

2.1. Enumeration of punctured self-avoiding polygons

The method used to enumerate punctured SAPs on the square lattice is a generalization of the
method devised by Enting [7] for the enumeration of ordinary SAPs. In the following we first
describe the original method in some detail and show how simple it is to generalize the method
to the enumeration of punctured polygons. The first terms in the series for the generating
function can be calculated using transfer matrix techniques to count the number of polygons
in rectanglesW + 1 edges wide andL + 1 edges long. The transfer matrix technique involves
drawing a line through the rectangle intersecting a set ofW +2 edges. For each configuration of
occupied or empty edges along the intersection we maintain a (perimeter) generating function
for loops to the left of the line cutting the intersection in that particular pattern. Polygons in a
given rectangle are enumerated by moving the intersection so as to add one vertex at a time, as
shown in figure 3. Since the loops are non-intersecting, each configuration can be represented
by an ordered set of edge states{ni}, where

ni =


0 empty edge

1 lower part of loop closed to the left

2 upper part of loop closed to the left.

Configurations are read from the bottom to the top. So the configuration along the intersection
of the polygon in figure 3 is{0112122}. In passing it is worth noting that there are some major
restrictions on the possible configurations. Firstly, since all loop ends are connected to the
left of the intersection, every lower loop end must have a corresponding upper end, and it is
therefore clear that the total number of ‘1’ is equal to the total number of ‘2’. Secondly, as
we look through the configuration starting from the bottom the number of ‘1’ is never smaller
than the number of ‘2’.
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Figure 3. A snapshot of the intersection (dashed line)
during the transfer matrix calculation on the square lattice.
Polygons are enumerated by successive moves of the kink
in the intersection, as exemplified by the position given by
the dotted line, so that one vertex at a time is added to the
rectangle. To the left of the intersection we have drawn an
example of a partially completed polygon.

Table 1. The various ‘input’ states and the ‘output’ states (with corresponding weights) which
arise as the boundary line is moved in order to include one more vertex of the lattice.

Input Outputs

‘00’ ‘00’ x2‘12’
‘01’/‘10’ x‘01’ x‘10’
‘02’/‘20’ x‘02’ x‘20’
‘11’/‘22’ ‘ 00’
‘21’ ‘00’
‘12’ ‘accumulate’

In table 1 we have listed the possible local ‘input’ states and the ‘output’ states which
arise as the kink in the intersection is propagated by one step. Some of these update rules are
illustrated further in figure 4. The first panel represents the input states ‘10’ and ‘01’ and the
possible output states are also ‘01’ and ‘10’. The second panel represents the input state ‘11’
as part of the configuration{01122}. In this case we connect the two loop ends, but in doing
so we see that the upper part of the second loop before the move becomes the lower part of
the one remaining loop after the move: that is, the configuration{01122} becomes{00012}.
This relabelling of the other loop end when connecting two ‘1’ (or two ‘2’) is denoted by
over-lining in table 1. In general, there could be more loops nested in between the two ‘1’ and
the corresponding ‘2’ at the other end of the loop. Say, for instance, we had the configuration
{11121222} and connected the first two ‘1’, then the new configuration of unconnected loop
ends would be{00121212} (drawing a little figure makes this quite clear). The general rule for
the relabelling is as follows: when connecting two ‘1’ (‘2’) we work upward (downward) in the
configuration, counting the number of ‘1’ and ‘2’ we pass until the number of ‘2’ (‘1’) exceeds
the number of ‘1’ (‘2’). This ‘2’ (‘1’) is the other end of the inner loop and it should now be
changed to a ‘1’ (‘2’), thus becoming the lower (upper) end of the outer loop (again drawing
a few pictures should make this clearer). The weights corresponding to these configuration
transformations are simply calculated by counting the number of steps which have been added
to the polygon. Note that the input state ‘12’ is special because connecting the two ends results
in a closed loop, so this is only allowed if there are no other loops cut by the intersection and the
result is a valid polygon, which is then accumulated in the total count for that particular length.
Failure to observe this restriction would result in graphs with disconnected components, either
one polygon over another or a polygon within another (this latter case is, of course, of interest
when we wish to enumerate punctured polygons). This is illustrated in figure 5 where we
show the possible ways a pair of loops can be placed relative to one another (left panels), how
the loops can be connected to produce a valid configuration (middle panels) and the ways of
connecting loops that lead to invalid graphs containing disconnected components (right panels).
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Figure 4. Some of the local configurations which occur as the kink in the intersection is moved
one step.

Figure 5. Illustration of how a pair of loops can be placed (left), connected to produce a valid SAP
(middle), and connections leading to forbidden graphs (right).

In this figure the invalid SAP in the bottom right panel could result in a valid punctured SAP.
Note also that from the input state ‘00’ we can produce the output state ‘12’ only if there are
other loops crossing the inter (otherwise we would produce disconnected polygons sitting side
by side). We refer the interested reader to [7,8] for further details regarding the encoding and
relabelling of configurations.

Due to the obvious symmetry of the lattice one need only consider rectangles with
L > W . In the original approach [7], valid polygons were required to span the enclosing
rectangle in the lengthwise direction. So it is clear that polygons with projection on they-
axis<W , that is polygons which are narrower than the width of the rectangle, are counted
many times. It is, however, easy to obtain the polygons of width exactlyW and length
exactlyL from this enumeration [7]. Any polygon spanning such a rectangle has a perimeter
of length at least 2(W + L). By adding the contributions from all rectangles of width
W 6 Wmax (where the choice ofWmax depends on available computational resources) and
lengthW 6 L 6 2Wmax−W + 1, with contributions from rectangles withL > W counted
twice, the number of polygons per vertex of an infinite lattice is obtained correctly up to
perimeter 4Wmax + 2.

With the original algorithm the number of configurations required asWmax increased grew
asymptotically as 3Wmax [12]. In a recent improvement of the algorithm [16,17] valid polygons
were required to span the rectangle inbothdirections. In other words we directly enumerate
polygons of width exactlyW and lengthL. For each configuration of partially completed
polygons we keep track of the current minimum number of stepsNcur that have been inserted
to the left of the intersection and we calculate the minimum number of additional stepsNadd
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required to produce a valid polygon that spans a rectangle of size at leastW ×W . If the sum
Ncur +Nadd> 4Wmax + 2 the partial generating function for that configuration was discarded
because it would make no contribution to the polygon count up to the perimeter lengths we
were trying to obtain. Numerical evidence indicated that the computational complexity was
reduced significantly. While the number of configurations still grew exponentially asλWmax,
the value ofλ was reduced fromλ = 3 toλ ' 2 with the improved algorithm. Furthermore,
for anyW we know that contributions will start at 4W since the smallest polygons have to span
aW×W rectangle, so for each configuration we need only retain 4(Wmax−W)+2 terms of the
generating functions while in the original algorithm contributions started at 2W + 2 because
the polygons were required to span only the lengthwise direction.

The generalization to enumeration of punctured polygons is obtained by noting that a
closed loop is formed whenever we connect a 1-edge to a 2-edge immediately above. If these
two edges were the only loop ends in the intersection we would have formed a valid polygon.
In other cases we need to ensure that the resulting polygon is a valid punctured polygon. That
is, we must ensure that the separate SAP just formed will be completely enclosed within a
larger polygon. So we wish to avoid forming separable polygons, as shown in the upper right
panel of figure 5, and ‘holes within holes’. As it turns out, the rule for a valid ‘12’ closure is
simply that we can connect the two loop ends provided there is anodd number of loop ends
below the loop being closed. To see this consider that as we go through a configuration we
note that each time we pass a loop end we go from the outside of the polygon to the inside and
vice versa. So, in a configuration all lattice cells between the first and second loop ends will lie
inside the finished polygon, lattice cells between the second and third loop end will lie outside
the polygon, and so on. Thus we see that by closing a loop which has an odd number of loop
ends below it we are closing off a part of the lattice which will lie inside the finished polygon.
In particular, we see that we avoid the situation shown in the upper right panel of figure 5 with
graphs containing disconnected pieces one over another. Likewise we avoid creating graphs
with disconnected pieces sitting side by side.

We also avoid forming holes within holes because closing a loop around the hole would
be prohibited since there would be an even number of loop ends below the ‘1’-edge (except
of course when forming a completed punctured polygon). Let us look at the possible edge
configurations around a puncture in some detail. First look at the configuration{. . .1122. . .}
(where the. . . are any edge configurations with an even number of edges making the total
configuration of edges a valid intersection). The outer ‘12’-edges cannot be connected (the
number of edges below the ‘1’ is even) so we have to connect two other edges on either side
of the hole, diminishing the number of edges by two and possibly changing the edge labels
on either side of the hole (in which case we end up with one of the subsequent cases). In
the top panels of figure 6 we show how the simplest interesting case{11112222} leads to
only valid punctured polygons. Secondly, in the case{. . .1121. . .}, we can connect the two
‘1’-edges forming a partial loop enclosing the hole. In doing so the matching ‘2’-edge of the
second ‘1’-edge is changed to a ‘1’-edge because it now is the new lower edge of the larger
loop formed by connecting the two original ‘1’-edges. The important thing to notice is that
the number of edges below this new ‘1’-edge is even so we cannot connect it to a ‘2’-edge
immediately above and we therefore do not form a hole within a hole. In the middle panel
of figure 6 we show the simplest interesting case{1111212222} and demonstrate that it leads
to valid punctured polygons. Thirdly, the configuration{. . .2121. . .} is not very interesting
since connecting the ‘21’-edges in front of the hole does not result in a loop partially enclosing
the hole. Finally, the configuration{. . .2122. . .} is obviously merely the mirror image of
the second case. Note that this covers all cases since more complicated configurations would
merely correspond to more convoluted loop structures.
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Figure 6. Illustration of how connecting loop ends lead to various cases of punctured SAPs.
In the upper (lower) panels we show how the configuration{11112222} ({1111212222}) can be
completed given that the first pair of ‘12’-edges are connected to form a puncture (in the lower
panel we further connect the two 1-edges on either side of the puncture). In each panel we also
show the intersection line with the numbers giving the labelling of the loop ends.

In this paper we use the generalization of the algorithm of [17] to count the number
of punctured SAPs with up to three holes. Obviously, the smallest hole we can make in a
SAP has perimeter 4 so the number of punctured SAPs is obtained correctly up to perimeter
4Wmax + 2 + 4k.

The algorithm used for the enumeration of punctured SAPs by area is a simple variation
of the algorithm described above. The encoding of configurations along the intersection and
the transformation of these configurations as the intersection is moved remain the same. The
only change is that the weights are different. In order to count the enclosed area we proceed as
follows: a unit of area may be added as the kink is moved to a new lattice cell (in figure 3 this
is the cell in which the dotted lines meet). Whether or not a unit of area is added is determined
by whether or not this lattice cell is inside or outside the polygon. But we already know from
the arguments given above that a lattice cell is inside the polygon if the number of loop ends
below the cell is odd (note that any loop end along the vertical edge cutting the horizontal part
of the kink is included in the count). So, in the case shown in figure 3 the lattice cell to which
the kink is moved lies outside the polygon (there are two loop ends below the kink) and no unit
of area is added. Note that a unit of area may be added for any given output configuration. In
this case the area generating function is obtained correctly to 2Wmax+ 3k. The factor 3k arises
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since it takes three lattice cells to completely surround the simplest puncture, which is just a
single cell.

As far as we are aware, series for punctured polygons have not been derived previously.
In such circumstances it is even more important than usual to undertake careful tests to ensure
that the series are correct. To this end, a second algorithm was implemented, by one of the
authors, to independently evaluate the series coefficients. The complete agreement we obtained
between the two data sets reassures us as to the correctness of our results.

2.2. Enumeration of punctured staircase polygons

The enumeration of punctured staircase polygons is much simpler. In fact, as we shall
demonstrate, it is a problem for which the computational complexity grows only as a polynomial
in the number of terms. As stated in the introduction, we can think of staircase polygons as
consisting of two non-intersecting directed walks on the square lattice. Punctured staircase
polygons naturally will have more than two walks, in fact up to 2k + 2 walkers can be present
in any given column. Due to the restrictions on staircase polygons it follows that a punctured
staircase polygon is formed by requiring that the walks be directed and that any two walkers
starting at one point join each other later without intersecting other walks. This can be encoded
in a transfer matrix calculation as follows: we count the number of punctured polygons in
rectangles as before and draw a line through the lattice intersecting theW + 2 edges. In this
case we need only specify whether or not each edge is part of the polygon or not, so each
configuration can be represented by an ordered set of edge states{ni}, where

ni =
{

0 empty edge

1 part of loop closed to the left.

This uniquely specifies the configuration because the first occupied edge is connected to the
last occupied edge and any edges in between are paired: e.g., the second and third (fourth and
fifth and so on) edges form a loop to the left and has to be connected to each other later on.
The rules for updating the configurations are as follows: from the local input state ‘00’ we can
always get the output ‘00’, and the output ‘11’ provided there is an odd number of edges below
the kink and also that the edge directly below the kink is empty. The rules for the output ‘11’
ensure that the new pair of walkers lie within the enclosing staircase polygon but not inside an
internal staircase polygon (thus preventing holes within holes), and that the lower walk does
not intersect other walks. From the local input state ‘01’ and ‘10’ we can always produce the
output ‘01’, and the output ‘10’ provided either that the edge directly below the kink is empty
or there is an even number of edges below the kink. These rules ensure that the walkers do not
intersect other walks except when we close a valid loop. Finally, from the local input state ‘11’
we always get the output state ‘00’. The weights associated with these updates are obtained
in the same way as for the SAP enumeration, whether the enumeration is done by perimeter
or area.

As in the previous case, we calculate the number of punctured staircase polygons spanning
the rectangles. Adding the contributions from all rectangles of widthW 6 Wmax and length
W 6 L 6 2Wmax−W + 1 the number of punctured staircase polygons is obtained correctly
up to perimeter 4Wmax + 2 + 4k. Note that for fixedk the maximum number of configurations
NC grows as a polynomial inWmax:

NC =
k∑
j=0

(
Wmax + 1
2j + 2

)
.

So in this case the algorithm is of polynomial complexity.
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3. Expected behaviour

As mentioned in the introduction, the problem of enumerating SAPs by area has been
extensively studied [9, 20]. It has been shown thatκ(k) = κ(0), and that if the exponents
exist,βk = β0 + k [26,27]. That is to say, fork finite, the connective constant fork-punctured
discs, by area, is the same as that for unpunctured discs, while the critical exponent increases
by one for each puncture. We repeat that the punctures are disjoint.

As far as we are aware, there has been no previous work on the problem of the perimeter
generating function of punctured SAPs. We first give a proof that a 1-punctured SAP on the
square lattice has the same connective constant as an unpunctured SAP, and indicate how that
proof can be generalized tok-punctured SAP.

Before stating and proving the relevant theorem, we require certain preliminary results.
For an (unpunctured) SAP of perimeter 2n one knows, [15] equation (7.101), that

exp[−b√n]µ2n/4n 6 p(0)2n 6 µ2n (3)

whereb is a constant. Further, it is obvious that a polygon of perimeter 2n has maximum area
n2/4, which occurs when the shape is ann/2× n/2 square. Thus the area of a polygon of
perimeter 2n, denotedA2n, satisfiesA2n 6 n2/4.

Now consider 1-punctured polygons of total perimeter 2n, with inner perimeter 2m and
outer perimeter 2(n−m). It is possible for the inner polygon to be Hamiltonian, in which case
its perimeter is greater than that of the surrounding polygon. Indeed, a square polygon of side
2n + 1, and hence of perimeter 8n + 4 can contain an internal polygon of perimeter as large as
4n2. Hence the semi-perimeter of the inner polygon,m, can range from a minimum value of
2 to a maximum value ofn− 2

√
2n + 2< n−√n for n > 1.

With these preliminaries, we can now state and prove the following theorem.

Theorem. limn→∞ 1
2n logp(1)2n = logµ, whereµ is the same constant as appears in the

corresponding limit for unpunctured SAPs.

Proof. 1-punctured polygons of total perimeter 2n are constructed by placing polygonsP of
perimeter 2m inside polygonsQ of perimeter 2n − 2m. Let w(P,Q) denote the number of
ways of placing polygonP inside polygonQ, (which of course depends on bothP andQ.)
Then

p
(1)
2n =

n−√n∑
m=2

∑
P

∑
Q

w(P,Q).

We bound this summand by the product of three factors. The first two factors are the number
of polygons of perimeter 2m and 2n− 2m, respectively. The third is the number of ways the
smaller polygon can be placed inside the surrounding polygon and is clearly less than or equal
to the area of the surrounding polygon. Explicitly,

p
(1)
2n 6

n−√n∑
m=2

(n−m)2µ2mµ2(n−m)/46 µ2n/4
n∑

m=2

(n−m)2 6 n3µ2n.

To obtain a lower bound, consider a 3× 3 square polygon with a unit square hole at its
centre. This unique realization ofp(1)16 can be uniquely concatenated with each unpunctured
polygon by joining them at a solitary specified edge, and then deleting that edge. For each
unpunctured polygon we take the set of left-most vertical edges and choose the bottom edge
from this set, and we choose the right-most, top-most vertical edge ofp

(1)
16 (a similar operation

is shown for polyominoes in figure A.1). The concatenation operation then gives, for each
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of thep2n−14 unpunctured polygons, a unique member of the set of 1-punctured polygons in
which the puncture is a single cell. Thus we havep(0)2n−14 6 p

(1)
2n . From the above equations

we thus obtain

exp
[
−b√n− 7

]
µ2n−14/4(n− 7) 6 p(0)2n−14 6 p

(1)
2n 6 n3µ2n

for n > 8. The theorem then follows immediately on taking logarithms, dividing through by
2n and taking the limit asn→∞. �

This proof can clearly be extended to 2-punctured polygons, then to 3-punctured polygons
etc, by concatenating unpunctured polygons with minimal 2-punctured, 3-punctured etc
polygons. In the appendix we prove thatk-punctured polyominoes have the same growth
constant as unpunctured SAPs by area.

We have been unable to prove a result analogous to the result for the exponent of punctured
SAPs by area, but give an argument that depends on certain assumptions that are generally
accepted, though not proved. In the case of staircase polygons, however, our assumptions have
been proved, and so our result will be rigorously true.

The key results we need are those obtained in [9] to the effect that the mean area of SAPs
of perimeter 2n is proportional ton1.5. This is true both for SAPs and for staircase polygons,
and in the latter case it has been proved. More precisely, we need the following result. There
exists constantsD1 andD2 such that the mean areāA2n of polygons of perimeter 2n satisfies

D1n
3
2 6 Ā2n =

∑
Q AQ

p2n
6 D2n

3
2

where the sum is taken over allp2n polygonsQ of perimeter 2n.
Further, there exists constantsC1 andC2 such that the number of polygons of perimeter

2n satisfies

C1µ
2nn−

5
2 6 p(0)2n 6 C2µ

2nn−
5
2 .

For staircase polygons,µ = 2 and the exponent is32 instead of52 in the above equation.
As above, letQ denote a polygon of perimeter 2n − 2m, with areaAQ. The number of

ways of placing a given polygonP of perimeter 2m insideQ is clearly less thanAQ.
Thus, the number of ways of placingP inside any polygon of perimeter 2n− 2m is less

than ∑
Q

AQ = p(0)2n−2mĀ2n−2m (4)

where the sum is over all polygonsQ of perimeter 2n− 2m.
Hence, the number of ways of placing all of thep(0)2m polygons of perimeter 2m inside any

polygon of perimeter 2n− 2m is less thanp(0)2mp
(0)
2n−2mĀ2n−2m, and so

p
(1)
2n <

n−√n∑
m=2

p
(0)
2mp

(0)
2n−2mĀ2n−2m < D2C

2
2µ

2n2−5S2n (5)

where

S2n =
n−√n∑
m=2

m−
5
2 /(n−m).

The last sum may be evaluated in a variety of ways. Using Maple we find that

S2n = 0.341. . . /n + O(n−
3
2 ).
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Thus we obtain the bound

p
(1)
2n < const.µ2n/n. (6)

For staircase polygons the analogous calculation is slightly simpler, and we find

S2n ∼ 1 + ζ(3/2) + O(n−
1
2 )

whereζ(z) is the Riemann zeta function.
To obtain a lower bound, we restrict the inner polygon to be of perimeter 4, that is, a unit

square. The number of polygons punctured by a unit square clearly provides a lower bound to
the number of 1-punctured polygons. A unit square can be placed anywhere in a polygonQ

of perimeter 2n − 4 except on a boundary site. There are 2n − 4 boundary sites. The mean
area ofQ is greater thanD1(n− 2)

3
2 , so we obtain the bound

p
(1)
2n > p2n−4(D1(n− 2)

3
2 − 2n + 4) > C1

µ2n−4

(2n− 4)
5
2

(D1(n− 2)
3
2 − 2n) > const.µ2n/n.

(7)

Combining the two bounds gives the result

E1µ
2n/n 6 p(1)2n 6 E2µ

2n/n

whereE1 < E2 are constants. Accepting the usual asymptotic form that is expected for such
models, we conclude that

p
(1)
2n ∼ const.µ2n/n. (8)

(For staircase polygons the analogous result isp
(1)
2n ∼ const. 4n.) Since the number of

unpunctured polygons grows likeµnn−5/2, we see that the exponent is predicted to increase
by 3

2 as the result of a single puncture, while in the case of the area generating function, the
exponent is found to increase only by 1. We show in the next section that this prediction is
borne out by our numerical calculations.

For punctured staircase polygons, a similar conclusion holds. That is, the connective
constant is unaltered atµstair = 2, but the exponent increases by 1.5 over its unpunctured
counterpart when enumerating 1-punctured staircase polygons by perimeter. In fact, we have
been able to calculate the generating function for staircase polygons with a single puncture of
perimeter 4, and also with a single puncture of perimeter 6. The generating functions for these
special cases are given below, and are precisely in accordance with the more general results
given above.

We also note that Cardy [3] recently considered the problem of the number of punctured
SAP with k concentric, mutually self-avoiding SAPs surrounding a fixed point of the dual
lattice. Thus fork = 1 this corresponds to 1-punctured SAPs surrounding a fixed point. In
that case Cardy finds [3] for the number of such configurationsb

(1)
2n thatb(1)2n = µ2n ln n

64π2n
. The

above calculation may be repeated for Cardy’s problem. All that is required is to add a factor
Ām to the summand in equation (5), as the surrounded point can be anywhere inside the inner
polygon. Thus we must multiply by the mean area of that polygon. The sum definingS2n

then becomesS2n =
∑n−√n

m=2
1

m(n−m) ∼ logn/n, in agreement with Cardy’s result. (Our lower
bound for this problem is too weak, but with more effort could be improved.)

4. Analysis of the series

All the series we have investigated are characterized by coefficients that grow exponentially,
with sub-dominant term given by a critical exponent. The generic generating function
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behaviour isG(z) =∑n gnz
n ∼ A(z)(1−σz)−ξ , and hence the coefficients of the generating

function gn = [zn]G(z) ∼ A(1/σ)/0(ξ)σ nnξ−1. Generally speaking the existence of the
growth constantσ has been proved, but except for exactly solvable models, such as staircase
polygons, the existence of the critical exponentξ has only been conjectured, although its
existence has never been doubted. The radius of convergence of the generating function is
usually given by the critical point, which is atz = 1/σ.

We principally used two methods to analyse all the series studied in this paper. Firstly,
to obtain the singularity structure of the generating function we used the numerical method
of differential approximants [13]. In particular, we used this method to estimate the growth
constantσ and the critical exponentξ.We were invariably able to conjecture an exact value for
ξ, which was always an integer or half-integer for all the problems we investigated. Imposing
this conjectured exponent permitted a refinement of the estimate of the growth constant—
providing so-called biased estimates.

Once the exact value of the exponent was conjectured, and the growth constant
accurately estimated, we turned our attention to the ‘fine structure’ of the asymptotic form
of the coefficients, by fitting the coefficients to the assumed formgn = [zn]G(z) ≈
σnnξ−1∑

i>0 ci/n
f (i). If there is no non-analytic correction term, thenf (i) = i, while a

square-root correction term meansf (i) = i/2. For all the series studied, only these two
situations were encountered.

In all cases, our procedure is toassumea particular form forf (i), and see how it fits the
data. With the very long series we now have at our disposal, it is usually easy to see if the
wrong assumption has been made—the sequence of amplitude estimatesci either diverges to
infinity or converges to zero. Once the correct assumption is made, convergence is usually
rapid and obvious. A detailed demonstration of the method can be found in [5,17].

As an example of the sort of results we obtained, we show sequences of estimates of the
coefficients of the perimeter generating function of unpunctured SAPs in table 2. In that case we
conjectured thatf (i) = i.Because of the large amount of tabular data generated by the method,
we have not given this level of detail for the many series investigated here. We show only the
results for two series. For the others, we just give our assessment of the apparent convergence
of the sequencesci, and the estimated value of the limits. As the equations involved are linear,
the method is easy to implement, and interested readers can readily generate the relevant data
themselves. Some subtleties nevertheless exist. For example, for punctured staircase polygons,
the perimeter generating function hastwo singularities on the circle of convergence, and so
both must be taken into account. We discuss this in more detail in the relevant section below.

As for the first stage of the analysis, the method of differential approximants, we proceeded
as follows: estimates of the critical point and critical exponent were obtained by averaging
values obtained from first-order [L/N;M] and second-order [L/N;M;K] inhomogeneous
differential approximants. For each orderL of the inhomogeneous polynomial we averaged
over those approximants to the series which used at least the first 80–90% of the terms of
the series, and used approximants such that the difference betweenN , M, andK did not
exceed two. These are therefore ‘diagonal’ approximants. Some approximants were excluded
from the averages because the estimates were obviously spurious. The error quoted for these
estimates reflects the spread (basically one standard deviation) among the approximants. Note
that these error bounds shouldnotbe viewed as a measure of the true error as they cannot include
possible systematic sources of error. However, systematic error can also be taken into account
in favourable situations as, for example, in the case of SAPs enumerated by perimeter [17].
Again, in the interests of space, we present only our results, and not the intermediate detail from
which our estimates were made. An example in full detail for one of the series investigated in
this study can be found in [17]. We turn now to the analysis of all the series.
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Table 2. A fit to the asymptotic formp(0)2n ∼ µ2n−
5
2 [c0 + c1/n + c2/n

2 + c3/n
3 + · · ·] for the

number of SAPs enumerated by perimeter; estimates of the amplitudesc0, c1, c2, c3.

n c0 c1 c2 c3

20 0.099 400 85 −0.027 457 05 0.024 763 76 0.118 221 81
21 0.099 401 18 −0.027 475 48 0.025 113 47 0.116 011 07
27 0.099 401 77 −0.027 513 55 0.025 932 11 0.110 118 80
28 0.099 401 79 −0.027 515 10 0.025 972 36 0.109 770 30
29 0.099 401 80 −0.027 516 19 0.026 001 68 0.109 506 67
30 0.099 401 81 −0.027 516 94 0.026 022 73 0.109 310 43
31 0.099 401 82 −0.027 517 45 0.026 037 34 0.109 169 29
32 0.099 401 82 −0.027 517 77 0.026 046 92 0.109 073 54
33 0.099 401 82 −0.027 517 95 0.026 052 54 0.109 015 52
34 0.099 401 82 −0.027 518 02 0.026 055 00 0.108 989 29
35 0.099 401 82 −0.027 518 02 0.026 054 94 0.108 989 93
36 0.099 401 82 −0.027 517 96 0.026 052 85 0.109 013 58
37 0.099 401 82 −0.027 517 85 0.026 049 13 0.109 056 99
38 0.099 401 82 −0.027 517 71 0.026 044 08 0.109 117 57
39 0.099 401 82 −0.027 517 55 0.026 037 96 0.109 193 02
40 0.099 401 82 −0.027 517 36 0.026 030 97 0.109 281 58
41 0.099 401 82 −0.027 517 17 0.026 023 27 0.109 381 60
42 0.099 401 81 −0.027 516 96 0.026 015 00 0.109 491 74
43 0.099 401 81 −0.027 516 75 0.026 006 29 0.109 610 79
44 0.099 401 81 −0.027 516 53 0.025 997 20 0.109 737 96
45 0.099 401 81 −0.027 516 31 0.025 987 85 0.109 871 95

4.1. Staircase polygons

For (unpunctured) staircase polygons, the multi-variable width, height and area generating
function is known [2]. As usual, we denote

(a)n =
n−1∏
i=0

(1− aqi).

Further, denoting the first twoq-Bessel functions as

J0(x, y, q) =
∑
n>0

(−1)nxnq(
n+1
2 )

(q)n(yq)n

and

J1(x, y, q) =
∑
n>1

(−1)n−1xnq(
n+1
2 )

(q)n−1(yq)n−1(1− yqn)
the perimeter and area generating function is simply

P(x, y, q) = y J1(x, y, q)

J0(x, y, q)

wherex(y) is the variable conjugate to the horizontal (vertical) semi-perimeter, whileq counts
the area. No analogous results are known for punctured staircase polygons, although the
calculation for SAPs [26] by area can be carried overmutatis mutandisto prove that the area
generating function for a punctured staircase polygon withk holes has the same radius of
convergence as the area generating function for unpunctured staircase polygons. Further, the
critical exponent increases by 1 for each puncture, and unlike the case for SAPs, not only can
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we prove the existence of a critical exponent for unpunctured staircase polygons, but we know
its value. Hence we know the leading term in the asymptotic expansion of the generating
function by area fork-punctured staircase polygons.

For the expected behaviour of the perimeter generating function of punctured staircase
polygons, the arguments of the preceding section apply directly. The radius of convergence,
and hence the connective constant remains unchanged, and the argument given in the preceding
section suggests that the critical exponent should increase by 1.5 for each puncture. The results
of our analysis, presented below, bear this out.

4.1.1. Area generating function.For unpunctured staircase polygons, the area generating
function is given by

A(q) =
∑
n>1

a(0)n q
n = J1(1, 1, q)

J0(1, 1, q)
.

By inspection, this has poles at the zeros ofJ0(1, 1, q). The nearest zero is at [1]
1/q = η = 2.309 138 593 30, and there is a simple pole at that point. The next zero is well
separated (at 1/q = λ = 1.4435. . .) and so the asymptotic form of the generating function is

A(q) ∼ D/(1− ηq) +E/(1− λq) + · · ·
and hence

a(0)n = [qn]A(q) ∼ ηn(c0 + O((λ/η))n).

Our analysis bears this out, and we estimatec0 = 0.128 815 79.
For 1-punctured discs, our analysis, based on more than 100 series coefficients,

convincingly suggests the following asymptotic form:

A(1)(q) ∼ D(1)/(1− ηq)2 +E(1)/(1− ηq)1.5 + F (1)/(1− ηq) + · · ·
and hence

a(1)n = [qn]A(1)(q) ∼ ηnn
∑
i>0

ci/n
i/2.

The sequences of amplitude estimates, assuming this asymptotic form, are shown in table 3.
The apparent convergence of the amplitude estimates is, as explained above, our source of
evidence for this asymptotic form.

For 2-punctured discs, a similar analysis, based on some 86 series coefficients,
convincingly suggests the following asymptotic form:

A(2)(q) ∼ D(2)/(1− ηq)3 +E(2)/(1− ηq)2.5 + · · ·
and hence

a(2)n = [qn]A(2)(q) ∼ ηnn2
∑
i>0

ai/n
i/2.

For 3-punctured discs our analysis was based on an 89-term series. We found that the
above pattern persists, so that the generating function has the following asymptotic form:

A(3)(q) ∼ D(3)/(1− ηq)4 +E(3)/(1− ηq)3.5 + · · ·
and hence

a(3)n = [qn]A(3)(q) ∼ ηnn3
∑
i>0

ai/n
i/2.

Estimates of the various amplitudes defined above are shown in table 4.
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Table 3. A fit to the asymptotic forma(1)n ∼ ηnn[c0 + c1/n
1
2 + c2/n + c3/n

3
2 + c4/n

2 + · · ·] for
the number of 1-punctured staircase polygons enumerated by area; estimates of the amplitudes
c0, c1, c2, c3, c4.

c0 c1 c2 c3 c4

n (×10−3) (×10−2) (×10−2) (×10−2) (×10−2)

94 6.832 79 −1.862 63 −2.632 49 2.959 64 8.605 93
95 6.832 58 −1.861 82 −2.644 19 3.034 65 8.425 57
96 6.832 56 −1.861 73 −2.645 59 3.043 63 8.403 88
97 6.832 39 −1.861 09 −2.654 88 3.103 89 8.257 43
98 6.832 35 −1.860 92 −2.657 38 3.120 14 8.217 73
99 6.832 22 −1.860 40 −2.665 01 3.170 10 8.095 04

100 6.832 17 −1.860 19 −2.668 15 3.190 76 8.044 05
101 6.832 06 −1.859 76 −2.674 57 3.233 25 7.938 64
102 6.832 00 −1.859 53 −2.678 01 3.256 12 7.881 61
103 6.831 91 −1.859 16 −2.683 55 3.293 13 7.788 85
104 6.831 85 −1.858 93 −2.687 08 3.316 90 7.728 99
105 6.831 77 −1.858 60 −2.691 97 3.349 85 7.645 60
106 6.831 71 −1.858 37 −2.695 53 3.374 00 7.584 17
107 6.831 64 −1.858 09 −2.699 88 3.403 64 7.508 42
108 6.831 59 −1.857 86 −2.703 33 3.427 27 7.447 75
109 6.831 53 −1.857 61 −2.707 31 3.454 66 7.377 09
110 6.831 48 −1.857 39 −2.710 63 3.477 58 7.317 69
111 6.831 42 −1.857 16 −2.714 27 3.502 91 7.251 71
112 6.831 37 −1.856 96 −2.717 47 3.525 22 7.193 35
113 6.831 32 −1.856 75 −2.720 77 3.548 32 7.132 66

4.1.2. Perimeter generating function.For unpunctured staircase polygons, the perimeter
generating function (ignoring the distinction between height and width) is given by

P(x) = 1− 2x −√1− 4x

2

which is, apart from suppression of the first term, the generating function for Catalan numbers.
Hence

p
(0)
2n = [xn]P(x) = 1

n

(
2n− 2

n− 1

)
∼ 4n/n

3
2

∑
i>0

ci/n
i.

The values ofci follow immediately from the exact solution. They are given in table 4.
For 1-punctured discs, our analysis, again based on more than 100 series coefficients,

was more equivocal than that of the 1-punctured area generating function. The method of
differential approximants clearly identified a singularity at the known critical point,xc = 1

4,
but almost all approximants had a double root, implying a confluent singularity. The leading
exponent was estimated to be−1, implying a pole in the generating function, (and hence
immediately lending support to our conjectured change in the critical exponent of3

2 as a result of
puncturing), but we were unable, from this method, to identify the confluent exponent. Further,
a second singularity was identified, of the form const.(1 + x/xc)6.5. At this point we wish to
remark on the close similarity between a recently solved model of polygons, thethree-choice
polygonmodel [6] and 1-punctured staircase polygons. 1-punctured staircase polygons can be
thought of as being constructed from two three-choice polygons, with common edges deleted.
This geometric similarity is borne out by the fact that the two models have identical singularity
distributions, with even the exponents being the same at all non-physical singularities.
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Table 4. Amplitude estimates appearing in the asymptotic form of the coefficients of the various
models considered. The order of the term associated with the amplitudeci varies from model
to model, and is given in the text for each model. The various connective constants are:
η = 2.309 138 593 30,κ = 3.970 943 97,µ = 2.638 158 530 34,τ = 4.062 591. All numbers
quoted are expected to have errors only in the last quoted digit.k is the number of punctures. The
nth coefficient is given by prefactor×∑i>0 ci/n

f (i).See the text for the problem dependent value
of f (i).

Model,
parameter k Prefactor c0 c1 c2 c3

Staircase 0 ηn 0.128 815 79 O(1.5996−n)
polygons 1 ηnn 0.006 831 −0.0185 −0.028 0.04
by area 2 ηnn2 7.87× 10−5 −0.000 43 0.0010 −0.007

3 ηnn3 6.04× 10−7 −5.03× 10−6 0.000 031 −0.000 22

Staircase 0 4nn−
3
2 /
√
π 1

4
3
32

25
512

64
4096

polygons 1 4n 0.0147 −0.19 1.4

by 2 4nn
3
2 8.0× 10−4 −2× 10−2 0.2

perimeter 3 4nn3 3.0× 10−6 −1× 10−3 0.02
SAPs 0 κn/n 0.408 105 −0.5467 0.626 −3
by 1 κn 0.000 975 −0.0097 −0.04
area 2 κnn 0.000 001 18−0.000 019 −0.0001

3 κnn2 1.0× 10−9 −2× 10−8 −3× 10−7

SAPs 0 µ2nn−
5
2 0.099 4018 −0.02751 0.0255 0.12

by 1 µ2n/n 0.001 444 −0.008 43 0.0078 0.026

perimeter 2 µ2nn
1
2 0.000 011 −0.0001 0.0005

3 µ2nn2 1× 10−7

Polyominoes — τn/n 0.316 60 −0.233 0.62 −2.5
Punctured 1 κn 0.009 22 −0.107 0.30
polyominoes 2 κnn 0.000 104 −0.0022 0.009

3 κnn2 0.000 0008 −0.000 02 0.0002

For 1-punctured discs then, the perimeter generating function is expected to be of the
following asymptotic form:

P (1)(x) =
∑
n

p
(1)
2n x

n ∼ B(1)(x) +C(1)(x)(1− 4x)−1 +D(1)(x)(1 + 4x)6.5

and hence

p(1)n = [xn]P (1)(x) ∼ 4n
∑
i>0

ci/n
f (i) + (−4)nn−7.5

∑
i>0

di/n
i

whereB(1)(x), C(1)(x) andD(1)(x) are assumed regular in the disc|4x| 6 1.
Assumingf (i) = i, which implies only analytic correction-to-scaling terms, gave

unsatisfactory results. Notably, we observed that the estimates of the amplitudec1 in the
above asymptotic form were steadily increasing, suggesting that the assumed form did not
properly account for the correction-to-scaling terms. Withf (i) = i/2 the amplitude estimates
were much more stable. This then implies that the generating function in fact behaves as

P (1)(x) ∼ B(1)(x) +C(1)(x)(1− 4x)−1 +E(1)(x)(1− 4x)−
1
2 +D(1)(x)(1 + 4x)6.5. (9)

The amplitude estimates, assuming this asymptotic form, are shown in table 4. The apparent
convergence of the amplitude estimates is, as explained above, our source of evidence for this
asymptotic form. We did not tabulate the non-physical amplitudes, as they are of little interest
to our investigation. However, they need to be included to stabilize estimates of the physical
amplitudes. We mention in passing thatd0 ≈ 0.14.
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We also generated series for staircase polygons with two and three punctures, with
perimeter 150 and 134 steps, respectively. Our differential approximant analysis lent support
to our expectation that the critical exponent increases by 1.5 per puncture. This turned out to
be true for the non-physical singularity atx = − 1

4 as well. A similar analysis to that for the
1-punctured polygons strongly supported the analogous asymptotic forms,

P (k)(x) =
∑
n

p
(k)
2n x

n ∼ B(k)(x) +C(k)(x)(1− 4x)0.5−1.5k +D(1)(x)(1 + 4x)8−1.5k (10)

for k > 0. Hence the asymptotic form of the coefficients is conjectured to be

p
(k)
2n ∼ 4nn

3(k−1)
2

∑
i>0

c
(k)
i /n

i/2 + (−4)nn1.5k−9
∑
i>0

d
(k)
i /n

i

where the amplitude estimatesc(k)i are given in table 4.
We have also determined the exact generating function for staircase polygons punctured by

a single hole of perimeter 4, and also the generating function for staircase polygons punctured
by a single hole of perimeter 6. We obtained these generating functions by generating the
coefficients using the algorithm discussed, and then searching for an underlying differential
equation. As a result we find the perimeter generating functionsP s4 (x) andP s6 (x) for 1-
punctured staircase polygons with a hole of perimeter 4 and 6 respectively:

P s4 (x) =
2x4 − 16x3 + 20x2 − 8x + 1

2(1− 4x)
− 1− 6x + 10x2 − 4x3

2
√

1− 4x
(11)

and

P s6 (x) =
1− 26x + 228x2 − 906x3 + 1709x4 − 1378x5 + 322x6

2(1− 4x)
5
2

−32x6− 404x5 + 815x4 − 586x3 + 182x2 − 24x + 1

2(1− 4x)2
. (12)

Note that both these exact solutions display the confluent square-root correction that we have
found in our numerical investigations in the more general case. In the next section we analyse
the analogous generating function for SAPs.

4.2. Self-avoiding polygons

For unpunctured SAPs, the perimeter generating function was recently extended [17] to 90-step
polygons, and the asymptotics clearly identified. The polygon generating function is defined
to be

P (0)(x) =
∑
n

p
(0)
2n x

n ∼ A(0)(x) +B(0)(x)(1− µ2x)
3
2 (13)

where the functionsA(0) andB(0) are believed to be regular in the vicinity ofxc = 1/µ2. We
estimatedµ = 2.638 158 530 34(10). From this equation follows the asymptotic form of the
coefficients,

p
(0)
2n ∼ µ2nn−

5
2 [c1 + c2/n + c3/n

2 + c4/n
3 + · · ·]. (14)

We show in table 2 the sequence of estimates ofci,and in table 4 our estimates of the amplitudes,
being the limits of the sequences{ci}.

The area generating function was first studied in [9], where the first 20 terms were given,
and the asymptotic form estimated to be

A(0)(q) =
∑
n

anq
n ∼ D(q) +E(q) log(1− κq) (15)
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whereκ ≈ 3.970 87, and the logarithm in the above equation was understood to include the
possibility of some power of a logarithm other than unity. (Though our analysis below implies
that this is not the case.) In this paper we extend the series to 42 terms.

4.2.1. Area generating function.Using our greatly extended 42-term series, our analysis of
the unpunctured disc area generating function was carried out by standard methods. We used
differential approximants [13] and found unbiased critical point and critical exponent estimates.
The unbiased exponent estimate had absolute value less than 10−5, totally supporting our view
that it is exactly zero. Assuming this, a biased estimate of the critical point is possible, and in
this way we estimateκ = 3.970 943 97(9).

We then proceeded to seek the asymptotic form of the coefficients by writing

an = [qn]A(0)(q) ∼ κn/n
∑
i>0

ci/n
f (i).

Our numerical results were well converged, demonstrating very convincingly thatf (i) =
i. This is the asymptotic form consistent with a pure logarithmic singularity, not raised to any
power. Estimates of the amplitudes are given in table 4.

For 1-punctured discs, our analysis, based on the series known toq45, convincingly
suggests the following asymptotic form:

A(1)(q) ∼ D(1)(q) +E(1)(q)/(1− κq)
and hence

a(1)n = [qn]A(1)(q) ∼ κn
∑
i>0

ci/n
i.

Attempts to fit to alternative forms, corresponding to a confluent logarithm or a non-analytic
correction-to-scaling term were unsuccessful, adding to our confidence that the above form is
correct. Estimates of the amplitudes are given in table 4.

For 2-punctured discs, our analysis, based on the series known toq48, convincingly
suggests the following asymptotic form:

A(2)(q) ∼ D(2)(q) +E(2)(q)/(1− κq)2
and hence

a(2)n = [qn]A(2)(q) ∼ κnn
∑
i>0

ci/n
i.

The conjectured asymptotic form fork-punctured polygons, by area, is thus

A(k)(q) ∼ D(k)(q) +E(k)(q)/(1− κq)k.

4.2.2. Perimeter generating function.The results for unpunctured polygons are fully
discussed at the beginning of section 4.2. As we found with staircase polygons, the generating
function for punctured discs by perimeter was a more challenging numerical analysis problem
than either its unpunctured counterpart, or its area counterpart.

We found that the method of differential approximants was not particularly satisfactory.
Given that we needed some 100 terms to successfully analyse the (presumably simpler) problem
of punctured staircase polygons by perimeter, it is not surprising that for punctured SAPs, for
which we have 33 non-zero coefficients (corresponding to perimeters up to 84 steps), the
method was not satisfactory. However, it did indicate the presence of a confluent singularity.
As we found a confluent square-root singularity for staircase polygons, it is hardly surprising
that a confluent singularity is detected for the punctured SAP generating function. In fact an
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exponent shift of around 1.7 was seen, compared with the expected value of 1.5. We attribute
this to the ‘short’ series, coupled with the well known deleterious effect of confluent terms in
such an analysis. Nevertheless, subsequent analysis of the asymptotic form of the coefficients,
assuming an exponent shift of 1.5, together with a square-root confluent term, as found for
punctured staircase polygons, gave satisfactory results.

We denote the generating function fork-punctured SAPs, by perimeter, as

P (k)(x) =
∑
n

p
(k)
2n x

n ∼ B(k)(x) +C(k)(x)(1− µ2x)1.5−1.5k (16)

where the exponent is conjectured. For 1-punctured SAPs, the vanishing of the exponent
implies a logarithmic singularity. We fitted the coefficients to the asymptotic form appropriate
to log(1−µ2x), so that the asymptotic form of the coefficients just involves decreasing integer
powers ofn. We then found that the estimates of the leading amplitude were monotonically
increasing, which implies that the asymptotic form is wrong—too weak. Including a confluent
square root singularity, as was found for punctured staircase polygons, stabilized the estimates.
Accordingly, we conjecture that the asymptotic form is dominated by a logarithmic singularity,
with a sub-dominant square root singularity, so that

p
(1)
2n = [xn]P (1)(x) ∼ µ2n/n

∑
i>0

ci/n
i
2 . (17)

Estimates of the amplitudesci are given in table 4.
For 2-punctured discs, a similar analysis suggested that the asymptotic form of the

generating function is

P (2)(x) =
∑
n

p
(2)
2n x

n ∼ B(2)(x) +C(2)(x)(1− µ2x)−1.5 (18)

again with evidence of a square-root confluent term. As for 1-punctured SAPs, we give
estimates of the amplitudesci defined by

p
(2)
2n ∼ µ2nn

1
2

∑
i>0

ci/n
i
2

in table 4.
For 3-punctured discs, a similar analysis suggested that the asymptotic form of the

generating function is

P (3)(x) =
∑
n

p
(3)
2n x

n ∼ B(3)(x) +C(3)(x)(1− µ2x)−3 (19)

again with evidence of a square-root confluent term. As for 1-punctured SAPs, we give
estimates of the amplitudesci defined by

p
(3)
2n ∼ µ2nn2

∑
i>0

ci/n
i
2

in table 4.
The conjectured asymptotic form fork-punctured polygons, by perimeter, is then

P (k)(x) =
∑
n

p
(k)
2n x

n ∼ B(k)(x) +C(k)(x)(1− µ2x)1.5−1.5k (20)

where fork > 0 we find strong evidence for a square-root correction-to-scaling term.
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4.3. Polyominoes

The problem of polyominoes has a long and interesting history, and has been well discussed
in the popular scientific literature [10].

The enumeration of square lattice polyominoes to 24 steps [23] was given in 1981, extended
to 25 steps in 1995 [4] and currently stands at 28 steps [20].

We have analysed the latest series by the method of differential approximants, and find
the generating function behaves as

P(y) =
∑
n

any
n ∼ G(y) +H(y) log(1− τy) (21)

wherean is the number of polyominoes of arean. In [4] the estimateτ = 4.062 65(5) was
given. The extra terms now available allow us to make the refined estimateτ = 4.062 591(9).
Analysis of the asymptotic form of the coefficients is totally consistent with a simple logarithm
in the generating function. Thus

an = [yn]P(y) ∼ τn
∑
i>0

ci/n
i+1.

The amplitude estimates are given in table 4. The leading amplitude is in complete agreement
with, but three orders of magnitude more accurate than that given in [11], while the order of
the leading term—O(1/n)—was predicted by physical arguments back in 1981 [21]. In that
paper, the logarithmic singularity in the generating function of strongly embedded site animals
was obtained. As discussed in the introduction, these are isomorphic to polyominoes.

As well as extending the polyomino series, Oliveira e Silva has enumeratedk-punctured
polyominoes [20] fork 6 6. Clearly, k = 0 polyominoes are just SAPs, and, as we have
seen in the previous section, these grow asκn whereκ = 3.9709· · · < τ . The arguments
in [25, 26] can be modified and applied to show that ak-punctured polyomino has the same
growth constantλ as its unpunctured counterpart, and this is done in the appendix.

Thus, the situation is that, for any finite number of punctures,

a(k)n = [yn]P (k)(y) ∼ κn

but that

an = [yn]P(y) =
∑
k>0

a(k)n ∼ τn.

We have analysed the series fork-punctured polyominoes,k = 0, 1, 2, and find the
asymptotic form of the coefficients to be

a(k)n = [yn]P (k)(y) ∼ κnnk−1
∑
i>0

c
(k)
i /n

i

corresponding to a generating function fork-punctured polyominoes having akth-order pole,
namely

P (k)(y) =
∑
n

a(k)n y
n ∼ H(k)(y)(1− κy)−k (22)

wherek = 0 is to be interpreted as a logarithm. Thus, just as for punctured polygons, it is
found that the exponent ofk-punctured polyominoes increases by one for each puncture. This
is also proved in the appendix.

The coefficientsc(k)i are given in table 4.
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5. Conclusion

We have investigated the effect of punctures on SAPs and staircase polygons enumerated both
by area and perimeter.

In order to do this, we have developed a new algorithm, exponentially faster than direct
counting, whereby we have radically extended a number of series. This extension was
necessary in order to probe some rather subtle numerical behaviour.

We found that, in every case, a finite number of punctures does not change the exponential
growth factor associated with the unpunctured counterpart of the punctured object being
enumerated.

This latter conclusion was also proved for polyominoes. The effect of punctures was also
investigated numerically for polyominoes.

Writing b(k)n for thenth coefficient in the generating function for somek-punctured object,
so that

b(k)n ∼ (ω(k))nnθ(k)

we foundω(k) = ω(0) in all cases. We found, further, thatθ(k) = θ(0) + k if enumerating
any of the objects we have considered by area. This can be proved, although subject, in some
cases, to the existence of the exponent in question. Subject to certain unproved assumptions
we also showed thatθ(k) = θ(0) + 3k/2 if enumerating by perimeter.

We have, for the first time, obtained good numerical estimates of the sub-dominant terms
for a range of problems, thus identifying both the nature of the generating function and any
correction-to-scaling terms.

We have also obtained an exact solution for the generating functions of staircase polygons,
enumerated by perimeter, punctured by a single hole of perimeter 4 and of perimeter 6.
These exact solutions provide additional support for our numerically based conjectures of
the correction-to-scaling exponent in the general case.

A more accurate estimate of the growth constant for SAPs enumerated by area has been
given, complementing our earlier work on the perimeter growth constants [17].

E-mail or WWW retrieval of series

The series for the various generating functions studied in this paper can be obtained via e-mail
by sending a request to I.Jensen@ms.unimelb.edu.au or via the World Wide Web on the URL
http://www.ms.unimelb.edu.au/˜iwan/ by following the instructions.
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Appendix A. Growth constants and exponents fork-punctured polyominoes

In this appendix we show that the growth constants are the same for allk-punctured
polyominoes. Our method of proof is based on that of van Rensburg and Whittington [25,26],
making the necessary changes for the polyomino problem, and discussing in detail certain
special cases. That is to say, ifκ denotes the connective constant for SAPs enumerated
by area, then this is the growth constant fork-punctured polyominoes for any finitek.
Further, if the usual asymptotic form for the number ofk-punctured polyominoes is assumed,
s(k)n ∼ Ckn−φkκn, andφ0 exists, thenφk = φ0 − k.

A.1. Operations and mappings on punctured polyominoes

Let the set of allk-punctured polyominoes withn cells be denoted by8(k)
n , and the set of all

polyominoes ofn cells be8n. Then, for eachn, 8n =
⋃
k 8

(k)
n . Throughout, lets(k)n denote

the cardinality of8(k)
n and letsn denote the cardinality of8n. Hencesn =

∑
k s

(k)
n .

Following [25, 26] we now define operations on punctured polyominoes, including
concatenation, drilling and surgery, which are needed in subsequent proofs. Concatenation
allows us to change the size of polyominoes, while drilling and surgery are concerned with
changing the number of holes in a polyomino.

A.1.1. Concatenation. The concatenation mapping defined here is similar to that in [14].
Consider the bounding rectangleR(P ) of any polyominoP ∈ 8(k)

n . Define the top (bottom)
edge ofP to be the top (bottom) edge along the east (west) side ofR(P ).

Now, the concatenation of two polyominoesP ∈ 8(h)
n andQ ∈ 8(k)

m is defined by joining
P andQ while superimposing the top edge ofP and the bottom edge ofQ. The result is an
(h + k)-punctured polyomino withm + n cells, see figure A.1. Hence we have a map

T : 8(h)
n ×8(k)

m 7−→ 8(h+k)
m+n . (A.1)

Lemma A.1. For all non-negative values ofh and k, s(h)n s(k)m 6 s
(h+k)
m+n and in particular,

s
(h)
n+1 > s(h)n .

Proof. For the mappingT defined above, every pair of polyominoes in the domain can be
concatenated to form a larger polyomino in the codomain. Conversely, every such polyomino
in the codomain can be uniquely broken up into the original ones. However, there are
some polyominoes in the codomain which cannot be formed by concatenating two smaller
polyominoes. An example is a 2× 2 polyomino. Hence, we get the first part of the lemma as

|8(h)
n ×8(k)

m | 6 |8(h+k)
m+n |.

Puttingk = 0 andm = 1 and noting that|8(0)
1 | = 1, we get the second part. �

A.1.2. Drilling. Simply creating a hole inside an unpunctured polyomino by removing
some interior cells does not allow us to drill certain classes of polyominoes. For instance, a
polyomino composed of a single linear sequence of cells cannot be ‘drilled’ since removing
any cell will either disconnect the polyomino or shorten the sequence.

The following definition of drilling differs somewhat from that in [25, 26], although the
underlying idea is the same.

First, we drill one hole. LetP0 ∈ 8(0)
n be the polyomino that we are to puncture. Cover

P0 by a grid system, with each grid square of sizeb× b cells for anyb > 5 (the minimum size
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Figure A.1. Concatenation operation.

will be justified later). Sayb = 5. Pick any grid squareG that covers at least one cell ofP0

and drill a hole there, as detailed below.
Step 1.Remove all cells within the selected grid squareG. If, after this step, we are left

with a 1-punctured polyomino, we are done. If not, go to step 2.
Step 2.Check the corners ofG: If there are two disconnected components touching each

other only at the corner, connect them by adding a cell at the appropriate corner ofG.
Step 3.Put a 1-punctured polyomino with 8 cells at the centre ofG.
Step 4.Reconnect the disconnected components outsideG to the 1-punctured polyomino

by adding linear sequences of cells (non-unique). These steps are illustrated in figure A.2.
Note that the minimum value ofb is 5 because if we have anything less than that, we

might create extra holes unexpectedly as the 1-punctured polyomino in step 3 must touch the
boundary of the grid square. An example in figure A.3 will illustrate this. In this example the
original polyomino has no holes and the drilled polyomino has two holes, whereas with a grid
of size 5 (or more), the number of holes in the drilled polyomino is only one.

After this operation, the maximum number of cells that could be removed isb2 = 25
(finishing at step 1). The maximum number of cells that could be added isb2− 2 (this occurs
when there was only one cell in the square before drilling and we end up with a 1-punctured
polyomino withb2−1 cells after the operation). So, depending on each instance of the drilling
operation, we obtain a resulting polyominoP1 ∈ 8(1)

j wherej could be anything fromn− b2

to n + (b2 − 2). The drilling operation thus defines a map

D : 8(0)
n 7−→

n+(b2−2)⋃
j=n−b2

8
(1)
j . (A.2)

Theorem A.1. There exists a real constantC such that for allb > 5,

s(0)n 6 Cs
(1)
n+(b2−2). (A.3)
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Figure A.2. Drilling operation: (a) the original polyomino. After step 1, all the cells within the
grid square are removed. In step 2, we reconnect all the disconnected components around the
corner (shown in (b)). Then, in step 3, a 1-punctured polyomino is placed at the centre of the grid
square (shown in (c)). Finally, all the disconnected pieces outside the grid square are reconnected
to the punctured polyomino (shown in (d)).

Figure A.3. An illustration of a grid square that is too small.

Proof. Consider the intermediate (possibly disconnected) polyomino after step 1, call itP i .
There are many possible initial polyominoes which gives the sameP i , i.e., all polyominoes
with the same configuration outsideG. They all map to ‘almost’ the same resulting polyomino
(the uncertainty implied in ‘almost’ comes from the non-uniqueness of reconnecting in step 4
which will be discussed later). Therefore, the mapping from domain to codomain isM ′-to-one
whereM ′ is bounded by the number of ways that at mostb2 cells can be connected withinG.
Let the bound beM.

On the other hand, step 4 of the drilling process is not unique. There might be more than
one way to connect those disconnected components to the punctured polyomino. But sinceG

is finite, the number of ways of reconnection is bounded above. Let that bound beC ′.
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Together with the drilling mappingD defined above, we can write,

s(0)n 6 C ′M
n+(b2−2)∑
j=n−b2

s
(1)
j .

By the increasing monotonicity ofs(h)n overn (proven in lemma (A.1)),

s(0)n 6 (2b2 − 1)C ′Ms(1)
n+(b2−2).

SetC = (2b2 − 1)C ′M and the result follows. �

Now consider the drilling ofh holes. Denote bydce the ceiling ofc, the smallest integer
greater than or equal toc. Now, we could chooseh drilling locations from at leastdn/b2e grid
squares. To see this, consider first a polyomino withn cells, wheren 6 b2. The situation where
we have the least number of drilling sites is whenn cells fall exactly within one grid square.
In this way, we only have one possible grid square where we could drill holes. Similarly, if we
haveb2n+w cells, wheren > 1 and 06 w < b2, the minimal number of grid squares is when
b2n cells fall into exactlyn grid squares and the otherw cells falls into another single grid.
Then we haven + 1 possible grid squares to drill holes. Therefore, we have at leastdn/b2e
grid squares where we could drill holes.

LettingH be a set of grid squares, let8[H ]
n denote the set of all polyominoes withn cells

and|H | holes where there is a hole in each grid square ofH . Let s [H ]
n denote its cardinality.

One property of this set is that, for anyn1, n2 ∈ Z+ such thatn1 6 n2,

s [H ]
n1
6 s [H ]

n2
.

Theorem A.2. There exists a real constantK such that for allb > 5,( dn/b2e
h

)
s(0)n 6 Ks

(h)

n+(b2−2)h ∀b 6 dn/b2e. (A.4)

Proof. Place the polyomino in the grid system. LetA′ be the set of all grid squares where
we could drill holes. From previous results, we know there are at leastdn/b2e elements inA′.
Truncate the setA′ with only the firstdn/b2e elements and call this set of drilling sitesA.

Pick a subsetH ⊆ A such that|H | = h (6 dn/b2e) and drill holes one by one in each
grid square inH , leading to a series of mappings:

M : 8(0)
n 7−→ 8(1)

m1
7−→ 8(2)

m2
7−→ · · · 7−→ 8[H ]

mh

wheremi are appropriate constants depending on each instance of operation andmi 6
n + (B2 − 2)h∀i So, from this mappingM, we have

s(0)n 6 Chs [H ]
mh
6 Chs [H ]

n+(b2−2)h. (A.5)

Hence ∑
H∈A

s(0)n 6
∑
H∈A

Chs
[H ]
n+(b2−2)h( dn/b2e

h

)
s(0)n 6 Ch

∑
H∈A

s
[H ]
n+(b2−2)h( dn/b2e

h

)
s(0)n 6 Ks

(h)

n+(b2−2)h.

The last line arises since
⋃
H∈A 8

[H ]
n ⊆ 8(|H |)

n ≡ 8(h)
n and putK = Ch. �
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Figure A.4. An illustration of two special cases for the surgery
operation. In (b), P denotes the problem cell whose removal will
join three holes together. In this case we choose to removez′.

Figure A.5. A polyomino in 8̇(h)n where we
cannot apply the general surgery operation.

A.1.3. Surgery. The surgery operation removes a linear sequence of cells inside the
polyomino and concatenates the sequence to the external boundary of the polyomino. Our
objective is to join two holes, thereby reducing the number of holes by one.

We divide our domain into three classes:

(1) the set of polyominoes which have at least one hole with size one cell: denote this set by
8̇(h)
n with cardinalityṡ(h)n , see figure A.4(a);

(2) the set of polyominoes which are not in (1), and have three holes touching each other at
corners around a single cell: denote this set by8̈(h)

n with cardinalitys̈(h)n , see figure A.4(b);
(3) the set of polyominoes which are not in (1) nor (2) (the general case): denote this set by

8̃(h)
n = 8(h)

n \(8̇(h)
n

⋃
8̈(h)
n ) with cardinalitys̃(h)n .

The general case.First, let us look at polyominoes iñ8(h)
n . Consider a polyominoα(h)n ∈ 8̃(h)

n .
LetL be the set of all loop-free sequences† of cells inα(h)n , one end of which must touch the
boundary of one hole and the other end must touch the boundary of another hole (or the exterior
boundary). Define the length of the sequence to be the number of cells in the sequence. Let
the setZ be the set of sequences inL that has minimum length.

Now pick one sequencez ∈ Z and cut it out. This step will join two holes together (or
join one hole and the exterior together). Next, using the definition in section appendix A.1.1,
concatenateα(h)n \ cz ⊕D ⊕ z (D is a 3× 3 polyomino block), and the resulting polyomino
has one less hole and nine more cells than the original one. So we have a mapping

S3 : 8̃(h)
n 7−→ 8

(h−1)
n+9 .

This mapping is at mostn-to-one because for any polyomino in the codomain, we could find
at mostn locations to connectz back. As a result, we find that

s̃(h)n 6 ns
(h−1)
n+9 . (A.6)

Special cases. There are some subclasses of class (1) where we cannot apply the general
surgery operation. One example is shown in figure A.5 [27]. In this example, the minimum
length of the loop-free sequence connecting two boundaries is two, but when we try to remove
any such minimum sequence, we will disconnect the polyomino.

† A loop-free sequence is a sequence of cells where each successive pair of cells are joined and no cell appears more
than once in the whole sequence.
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To deal with class (1) polyominoes, we simply fill such a hole with a single cell. This
satisfies our objective of reducing the number of holes by one. So we find a mapping

S1 : 8̇(h)
n 7−→ 8

(h−1)
n+1 .

The mappingS1 is n′ to 1 wheren′ is less thann. To see this, consider a polyomino in the
codomain. To map back to the domain, we can choose anyinterior cell to remove and the
number of choices is obviously less than the total number of cells in the polyomino, son′ 6 n.
Therefore,

ṡ(h)n 6 ns(h−1)
n . (A.7)

Finally, consider polyominoes in̈8(h)
n . The problem with these polyominoes is that when

we try to remove the cell between the three holes, we will inevitably join three holes together
instead of joining two. One way to get around this is to deliberately choose another sequence
(which is also a cell in this class) in the setZ. In particular, we choose to remove the cell
z′ ∈ Z such thatz′ is the top cell (in lexicographic ordering) ofZ which is not the problem
cell. Similarly to the general case, we find a mapping

S2 : 8̈(h)
n 7−→ 8

(h−1)
n+9

and hence

s̈(h)n 6 ns
(h−1)
n+9 . (A.8)

Adding (A.6)–(A.8), we have

s(h)n = ṡ(h)n + s̈(h)n + s̃(h)n 6 ns
(h−1)
n+9 + ns(h−1)

n+9 + ns(h−1)
n

and, hence, the following theorem.

Theorem A.3. The number of polyominoes of arean with h holes is bounded above by3n
times the number of polyominoes of area(n + 9) with one less hole. That is,

s(h)n 6 3ns(h−1)
n+9 . (A.9)

A.2. Growth constants (by area)

The following theorem proves the existence and equality of all the growth constants fork-
punctured polyominoes for all finitek.

Theorem A.4. There exists a constantβ0 such that for allh > 0

lim
n→∞ n

−1 log(s(h)n ) = log(β0). (A.10)

Proof. We use induction. First,β0 exists [14]. Assumeβh = limn→∞ n−1 log(s(h)n ) exists.
From the results of the concatenation and surgery operations, we have

s
(h)
n−ms

(1)
m 6 s(h+1)

n 6 3ns(h)n+9.

Choose some valuem such that 0< s(1)m <∞, for examplem = 8. Take the logarithm, divide
by n and take the limitn→∞. This gives

log(βh) 6 log(βh+1) 6 log(βh)

and henceβh = βh+1. Iterating fromβ0 givesβ0 = βh for all finite h. �



Punctured polygons and polyominoes on the square lattice 1763

A.3. Relationships between critical exponents

The following theorem establishes the relationships between critical exponents should they
exist.

Theorem A.5. Assume for allh s(h)n ∼ Chn−φhβn0 whereCh is ah-dependent constant. Then

φh = φ0 − h. (A.11)

Proof. From the results of the drilling operation, we have

C−h
( dn/b2e

h

)
s
(0)
n−(b2−1) 6 s

(h)
n . (A.12)

Since ( dn/b2e
h

)
∼ 1

h!
dn/b2eh

substituting the assumed asymptotic forms(h)n ∼ Chn−φhβnh into (A.12), dividing byβn0 , taking
logarithms, dividing by log(n), lettingn→∞ and using the above result, we get

h− φ0 6 −φh. (A.13)

Next, from the result of the surgery operation, we have

s(h)n 6 3ns(h−1)
n+9 6 (3n)3(n + 9)s(h−2)

n+18 6 · · ·
6 (3n)3(n + 9) . . .3(n + 9h)s(0)n+9(h−1) 6 [3(n + 9h)]hs(0)n+9h.

Again by substituting the assumed asymptotic form, dividing byβ
(n)
0 , taking logarithms,

dividing by log(n) and lettingn→∞, we get

−φh 6 h− φ0. (A.14)

Henceφh = φ0 − h. �
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